
Mathematical Journal of Modelling and Forecasting 

Vol. 2, No. 2, December 2024, pp. 20-29 

https://mjomaf.ppj.unp.ac.id/ 20 

 

 

 

Modelling the Number of Stunting Cases in Indonesia in 2022 Using 

Negative Binomial Regression to Address Overdispersion 

Cinta Rizki Oktarina1* and Reza Pahlepi1 

1 Department of Statistics, Universitas Bengkulu, Indonesia 
*cintarizki199@gmail.com  

Abstract. This study models the incidence of stunting in toddlers in Indonesia in 2022 using negative 

binomial regression to address the overdispersion issue often present in count data. The Poisson regression 

model, typically used for count data, showed less accurate results due to the variance exceeding the mean, 

indicating overdispersion. By adopting a negative binomial regression approach, this study accommodates 

higher variability in the data, leading to more accurate estimates. The results reveal that the percentage of 

pneumonia cases and low birth weight are significant factors in stunting incidence. In contrast, other 

variables, such as complete basic immunization and poverty levels, are insignificant in the final model. 

The final negative binomial model yielded a lower AIC value than the initial model, indicating an improved 

model fit, with an R-squared (Nagelkerke's R²) of 50.50%. This study offers enhanced insights into the 

factors influencing stunting, supporting more targeted health policy decisions to reduce stunting rates in 

Indonesia. 
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1 Introduction 

Regression analysis is a statistical technique used to explore and model relationships between variables 

[1]. One type of data suited for regression modeling is count data. Poisson regression is a common approach 

for modeling count data, assuming a Poisson distribution where the mean and variance are equal [2]. However, 

when variance exceeds the mean (overdispersion), the Poisson model may be unsuitable, leading to 

underestimated standard errors and potentially invalid conclusions [3]. Overdispersion can often arise due to 

positive correlation among response variables, necessitating alternative methods like Negative Binomial 

regression. 

Negative Binomial regression introduces an additional parameter to handle better overdispersion, which 

assumes the Poisson mean is itself a random variable following a gamma distribution, resulting in the Negative 

Binomial distribution [4]. This method is widely used in various fields, such as epidemiology and social 

sciences, due to its flexibility in handling overdispersed and zero-inflated data [5]. Furthermore, Negative 

Binomial regression is more robust in skewed or asymmetrical data distributions and effectively addresses 

outliers through a longer-tailed distribution, yielding more accurate estimates compared to Poisson regression 

[6]. 

Studies utilizing Negative Binomial regression include [7], which addressed overdispersion in dengue 

fever data, and [8], which applied Negative Binomial regression to examine factors influencing infant and 

maternal mortality. This study aims to model stunting incidence factors in Indonesia in 2022, as existing 

research has not applied Negative Binomial regression to this case. 

According to the Indonesian Ministry of Health (2022), stunting is a growth disorder due to chronic 

malnutrition and long-term infections, marked by slower development compared to peers. Despite annual 

declines in stunting prevalence (from 27.7% in 2019 to 24.4% in 2021), Indonesia’s rates remain above 

WHO’s recommended 20% threshold. The government aims to lower this rate to 19% by 2024. Stunting has 

both short-term impacts, such as increased susceptibility to illness, and long-term effects, including impaired 

cognitive development and lower reproductive health. 
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Numerous interventions have been introduced to address stunting, including the “Isi Piringku” campaign 

by Indonesia’s Ministry of Health, which promotes balanced meals. Additionally, community-based health 

services can help improve maternal and child health, potentially through health workers or trained volunteers. 

Despite these efforts, studies such as [9] and [10] have yet to apply Negative Binomial regression to stunting 

data in Indonesia. Therefore, this study employs Negative Binomial regression to model stunting cases in 

Indonesia in 2022, offering a robust approach to address overdispersion in count data for more accurate 

analysis. Based on data from the 2022 National Nutrition Status Survey (SSGI), the stunting prevalence in 

Indonesia was 21.6%, a decline from 24.4% in the previous year. This study addresses the gap in existing 

research by employing the method and selecting relevant variables: pneumonia prevalence (X₁), immunization 

coverage (X₂), low birth weight (X₃), and poverty (X₄). These variables capture critical aspects of health and 

socio-economic conditions, forming a comprehensive framework to analyze stunting determinants in 

Indonesia. 

2 Theoretical Basic 

2.1 Poisson Regression 

Poisson Regression is a regression method used for data where the response variable is not normally 

distributed and is discrete, specifically following a Poisson distribution. For predictor variables, data can be 

either discrete or continuous. Poisson Regression is a non-linear regression model used for count data where 

the response variable follows a Poisson distribution  [11]. The Poisson distribution is a probability distribution 

that describes the number of successes in a random experiment. In Poisson regression, it is assumed that the 

response variable follows a Poisson distribution and that there is no multicollinearity among predictor 

variables. This model also must meet the equidispersion assumption, meaning the mean of the response 

variable should equal its variance, with a dispersion parameter value of 𝜙 =  1. If the response variable 

follows a Poisson distribution with a parameter μ, the probability function of the Poisson distribution can be 

expressed as follows: 

𝑓(𝑦, 𝜆) =
𝑒−𝜆𝜆𝑦

𝑦!
. (1) 

𝑦: Number of events (observations). 

𝜆: Average incidence (Poisson parameter). 

2.2 Overdispersion 

According to [12], overdispersion in Poisson regression occurs when the variance of the response 

variable is greater than its mean. Some causes of overdispersion include: 

1. Correlation among observations. 

2. Violation of the Poisson distribution assumption, where 𝑉𝑎𝑟(𝑌)  >  𝐸(𝑌). 

3. Excess zeros in the data. 

4. Presence of outliers in the data. 

Overdispersion causes the model’s deviance to become very large, making the resulting model less 

accurate. The deviance value can be calculated using the following formula: 

𝐷 = 2 ∑ (𝑦𝑖 ln (
𝑦𝑖

𝑦�̂�
) − (𝑦𝑖 − 𝑦�̂�))𝑛

𝑖=1 . (2) 

One way to address this is by replacing the Poisson distribution assumption with a more flexible 

distribution. Overdispersion can be handled using negative binomial regression. The negative binomial 

regression model assumes that the response variable follows a negative binomial distribution. One advantage 

of negative binomial regression is its ability to be used in both equidispersion and overdispersion conditions 

[13]. Additionally, because the response variable in negative binomial regression is assumed to follow a 

negative binomial distribution, this model does not require the variance to be equal to the mean. 
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2.3 Negative Binomial Regression 

As an application of GLM, the negative binomial distribution has three components: the random 

component, the systematic component, and the link function [14]. To form a regression model, the mean and 

variance are given as 𝐸(𝑦) = 𝜇 and 𝑉𝑎𝑟 (𝑦) = 𝜇(1 + 𝜃𝜇), with the probability mass function of the negative 

binomial as follows: 

𝑓(𝑦; 𝜇, 𝜃) =
Γ(𝑦+

1

𝜃
)

Γ(
1

𝜃
)𝑦!

(
1

1+𝜃𝜇
)

1

𝜃
(

𝜃𝜇

1+𝜃𝜇
)

𝑦

. (3) 

When 𝜃 = 0 , the negative binomial distribution has a variance 𝑉𝑎𝑟 (𝑦) = 𝜇. The negative binomial 

distribution will approximate a Poisson distribution, which assumes that the mean and variance are the same, 

namely 𝐸(𝑦) = 𝑉𝑎𝑟(𝑦) = 𝜇. The exponential family distribution function of the negative binomial 

distribution [14] is as follows: 

𝑓(𝑦; 𝜇, 𝜃) = exp {𝑦 ln (
𝜃𝜇

1+𝜃𝜇
) +

1

𝜃
ln (

1

1+𝜃𝜇
) + ln (

Γ(𝑦+
1

𝜃
)

Γ(
1

𝜃
)𝑦!

)}. (4) 

The contribution of predictor variables in the negative binomial regression model is expressed as a linear 

combination of the parameter 𝜂 with the regression parameters to be estimated, namely[15]: 


𝑖

= 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝑝

𝑘=1

 

 = 𝐗𝛃. (5) 

where  is an (𝑛 × 1)vector of observations, X is an (𝑛 × 𝑐) matrix of predictor variables and 𝛃 is a 

(𝑐 × 1) matrix of regression coefficients with 𝑐 = 𝑝 + 1. The response variable 𝑌 is discrete and positive. 

Therefore, to transform the value of 
𝑖
 (a real number) to the appropriate range of the response𝑌, a link 

function g(.) is needed [14], which is: 

g(𝜇𝑖) = ln 𝜇𝑖 with 𝜇𝑖 = exp(𝒙𝒊
𝑻𝜷) then 

g(𝜇𝑖) = ln exp(𝒙𝒊
𝑻𝜷)  

g(𝜇𝑖) = (𝒙𝒊
𝑻𝜷)   

Parameter estimation of negative binomial regression uses the maximum likelihood method with the 

Newton-Raphson procedure. This method requires the first and second derivatives of the likelihood function 

𝑦𝑖  to have a negative binomial distribution probability mass function as follows: 

𝑓(𝑦𝑖|𝜇𝑖, 𝜃) =
Γ(𝑦𝑖+

1

𝜃
)

Γ(
1

𝜃
)Γ(𝑦𝑖+1)

(
1

1+𝜃𝜇𝑖
)

1

𝜃
(

𝜃𝜇𝑖

1+𝜃𝜇𝑖
)

𝑦𝑖
. (6) 

Since the functions are mutually independent, the log-likelihood function is 

𝐿(𝛃, 𝜃) = ∏
Γ(𝑦𝑖+

1

𝜃
)

Γ(
1

𝜃
)Γ(𝑦𝑖+1)

(
1

1+𝜃𝜇𝑖
)

1

𝜃
(

𝜃𝜇𝑖

1+𝜃𝜇𝑖
)

𝑦𝑖𝑛
𝑖=1 . (7) 

With 
Γ(𝑦𝑖+

1

𝜃
)

Γ(
1

𝜃
)

= ∏ (𝑟 + 𝜃−1)𝑛
𝑟=1  

𝐿(𝛃, 𝜃) = ∏ (∏ (𝑟 + 𝜃−1)𝑛
𝑟=1 )

1

𝑦𝑖1
(

1

1+𝜃𝜇𝑖
)

1

𝜃
(

𝜃𝜇𝑖

1+𝜃𝜇𝑖
)

𝑦𝑖𝑛
𝑖=1   

ln{𝐿(𝛃, 𝜃)} = ∑ [Λ]𝑛
𝑖=1    

Λ = (∑ ln(𝑟 + 𝜃−1)
𝑦𝑖−1
𝑟=1 ) − ln(𝑦𝑖!) + 𝑦𝑖 ln(𝜃𝜇𝑖) − (𝜃−1 + 𝑦𝑖) ln(1 + 𝜃𝜇𝑖)  

The first derivative of the log-likelihood function with respect to the coefficient 𝜷 is : 
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𝜕𝐿(𝛃,𝜃)

𝜕𝛽0
= ∑ [(𝑦𝑖 + 𝜃−1) (

𝜃𝜇𝑖

1+𝜃𝜇𝑖
)]𝑛

𝑖=1 = ∑ [
𝑦𝑖−𝜇𝑖

1+𝜃𝜇𝑖
] = 0𝑛

𝑖=1   

⋮  

𝜕𝐿(𝛃,𝜃)

𝜕𝛽𝑝
= ∑ [𝑦𝑖𝑥𝑖𝑝 − (𝑦𝑖 + 𝜃−1) (

𝜃𝜇𝑖𝑥𝑖𝑝

1+𝜃𝜇𝑖
)]𝑛

𝑖=1   

= ∑ [
(𝑦𝑖−𝜇𝑖)𝑥𝑖𝑝

1+𝜃𝜇𝑖
]𝑛

𝑖=1   

= ∑ [
𝜇𝑖

1+𝜃𝜇𝑖

(𝑦𝑖−𝜇𝑖)𝑥𝑖𝑝

𝜇𝑖
]𝑛

𝑖=1 = 0  

The steps for estimating parameters in negative binomial regression are as follows: 

1. Determine the initial estimate of 𝜃, for example, �̂�𝑖 = 0.1. 

2. Determine the maximum likelihood estimate of the parameter 𝛃 using the Fisher scoring iteration 

procedure with the assumption 𝜃 = �̂�1: 

�̂�𝑖+1 = �̂�𝑖 + (𝐗𝐓𝐖𝐣𝐗)
−𝟏

𝐗𝐓𝐖𝐣𝐳𝐢. (8) 

3. Use �̂� to estimate the parameter 𝜃 using a single-variable Newton-Raphson iteration procedure; the 

iteration ends when |�̂�𝑖+1 − �̂�𝑖| ≤ 𝜀: 

�̂�𝑖+1 = �̂�𝑖 −
𝑓′(𝜃𝑖)

𝑓′′(𝜃𝑖)
. (9) 

4. If |�̂�𝑖+1 − �̂�𝑖| ≤ 𝜀, the iteration stops; if not, use the parameter 𝜃 = �̂�1 and return to step 2. Here, 𝜀 is a 

very small positive number. 

The parameter testing for the negative binomial regression model is conducted using the Maximum 

Likelihood Ratio Test (MLRT), which involves calculating two likelihood functions to obtain the test statistic 

for simultaneous parameter testing. These likelihood functions are as follows: 

𝐿(Ω̂) is the likelihood value involving all predictor variables. 

𝐿(ω̂) is the likelihood value without involving all predictor variables. 

The hypotheses are as follows: 

H0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0  

H1 ∶ At least one 𝛽𝑗 ≠ 0 ; 𝑗 = 1,2, ⋯ , 𝑝 

Test statistics: 

𝐷(�̂�) = −2ln∆  

=  −2 ln (
𝐿(ω̂)

𝐿(Ω̂)
)   

= 2 (ln𝐿(Ω̂) − ln𝐿(ω̂)) . (10) 

Where 𝐷(�̂�) is the deviance value of the Poisson regression model or the likelihood ratio. This test 

statistic follows a chi-square distribution with K degrees of freedom [16]. The rejection region for 𝐻0 is if 

𝐷(�̂�) > 𝜒(𝛼;𝑝)
2 . From the results of the Poisson regression model formation, the parameter estimates may not 

necessarily have a significant effect on the model. 

The hypotheses are as follows: 

H0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0  

H1 ∶ At least one 𝛽𝑗 ≠ 0 ; 𝑗 = 1,2, ⋯ , 𝑝 
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Test statistics: 

𝐺 = −2 ln (
𝐿0

𝐿1
) = −2(ln𝐿0 − ln 𝐿1). (11) 

  Therefore, partial parameter testing is needed to examine the significance of each parameter in the 

model. According to Hocking (1996), the test is as follows: 

The hypotheses are as follows: 

H0 ∶  𝛽𝑗 = 0  

H1 ∶  𝛽𝑗 ≠ 0; 𝑗 = 1,2, ⋯ , 𝑝  

Test statistics: 

𝑧 =
𝛽�̂�

𝑠𝑒(�̂�𝑗)
. 

2.4 Number of Stunting Cases 

Stunting is a growth and development disorder in children due to chronic malnutrition and recurrent 

infections, marked by height or length below the standard set by the ministry responsible for health affairs. 

Stunting is caused by multidimensional factors and is not only due to poor nutrition experienced by pregnant 

women or young children. According to WHO, the characteristics of stunted children include delayed growth, 

late tooth eruption, a face that appears younger than their age, reduced focus, decreased memory ability, and 

limited eye contact. 

3 Method  

The research methodology section discusses the data sources and variables analyzed to achieve the 

study's objectives. This study uses secondary data from the 2022 Indonesian Health Profile, published by the 

Indonesian Ministry of Health in 2023, focusing on stunting rates across provinces in Indonesia. The response 

variable (𝑌) is the stunting rate, while the predictor variables (X) include the percentage of pneumonia (X₁), 

reflects the prevalence of respiratory infections that can hinder child growth. At the same time, complete basic 

immunization (X₂) indicates healthcare access, reducing disease risks linked to stunting. Low birth weight 

(X₃) represents poor prenatal conditions, often leading to growth impairment, and poverty (X₄) highlights 

socioeconomic challenges that limit access to nutrition, healthcare, and sanitation. These variables, sourced 

from health profiles and the Central Bureau of Statistics, are critical for understanding the determinants of 

stunting. 

The data analysis techniques carried out in this study are as follows: 

1. Determine the appropriate model (Poisson or negative binomial) based on overdispersion. 

2. Estimate parameters using the Maximum Likelihood Estimation (MLE) method. 

3. Test parameter significance with the Maximum Likelihood Ratio Test (MLRT). 

4. Evaluate the model using deviance or chi-square. 

5. Interpret the results to understand factors affecting stunting. 

6. Conclude findings and policy implications. 

4 Result and Discussion 

4.1 Poisson Regression 

The Poisson regression is used to model the average occurrence (λ) as an exponential function of a linear 

combination of predictor variables. This model is suitable for counting data and ensures that the predicted 

occurrences are always positive. Mathematically, the Poisson regression model is expressed as: 

ln(𝜆𝑖) = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘  
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After modeling, the following results were obtained: 

Table 4.1. Poisson regression parameter estimation 

Parameter 
Estimation 

Parameter 

Standard 

Error 
Z-value P-value 

𝛽0 9.636 0.005 2040.700 <0.001** 

𝛽1 0.022 0.00002 906.200 <0.001** 

𝛽2 0.025 0.00004 558.400 <0.001** 

𝛽3 -0.259 0.0003 -936.700 <0.001** 

𝛽4 0.025 0.0001 239.200 <0.001** 

Notes:  ** parameter is significant for 5% level  

After modeling stunting data in toddlers using Poisson regression, the parameter estimates show that all 

predictor variables significantly impact stunting incidence (P-value < 0.001). The intercept (𝛽₀ =  9.636) 

represents the log of the average stunting incidence when predictor variables are zero. The pneumonia 

percentage (𝛽₁ =  0.022) increases the average stunting rate by exp(0.022) =  1.022  for each 1 percent 

increase in pneumonia. Both the complete immunization rate (𝛽₂ =  0.025) and poverty rate (𝛽₄ =  0.025) 

increase stunting incidence by exp(0.025) =  1.025. Conversely, the low birth weight rate (BBLR) (𝛽₃ =
 −0.259) decreases stunting incidence by exp(0.259) = 1.295. The model's AIC value is 5470694, with 

Nagelkerke’s R² reaching 100%. The following is a visualization of the Poisson regression prediction results 

compared to the original value of the stunting number. 

\ 
Fig 1. Poisson regression visualization. 

4.2 Overdispersion 

Overdispersion occurs when the variance of count data is significantly larger than its expected value, 

violating a core assumption of Poisson regression. This can lead to inaccurate estimates and misleading 

inferences. Therefore, detecting and addressing overdispersion is crucial for ensuring the model fits the data 

characteristics. Before switching to a negative binomial or alternative model, it is important to check the 

response variable's distribution to confirm the chosen model aligns with the data’s distribution characteristics. 

Below is a further analysis of response variable distribution in the context of overdispersion. 

Table 4.2. Checking the distribution of the response variable 

Distribution Probability 

Lognormal 44% 

Negatif Binomial 34% 

Beta Binomial 9% 

The distribution check for the response variable indicates that the most likely predicted distribution is 

lognormal (44%), followed by zero-inflated negative binomial (34%) and beta-binomial (9%). However, as 

lognormal is a continuous distribution, it is less suitable for count data, which is discrete. Thus, the negative 

binomial distribution, with a 34% probability, is more relevant for count data. 
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Table 4.3. Overdispersion test 

Statistics Value 

Rasio Dispersion 379114.186 

Pearson's Chi-Squared 12510768.126 

P-value <0.001** 

The overdispersion test results in Table 2 indicate a serious issue with the Poisson regression model. A 

dispersion ratio of 379,114.186, much greater than 1, confirms significant overdispersion, as the data variance 

far exceeds its expectation. Pearson's Chi-square of 12,510,768.126 and a p-value below 0.001 confirm the 

model’s poor fit. These findings suggest that the Poisson model is unsuitable, and an alternative, like negative 

binomial regression, is needed for more accurate estimation. 

4.3 Negative Binomial Regression 

 Negative binomial regression extends the Poisson model by adding a dispersion parameter, allowing the 

variance to exceed the mean, which provides more accurate estimates when overdispersion is present. This 

section discusses the theory of negative binomial regression, parameter estimation methods, and its application 

and interpretation in the context of stunting data in children. This model aims to offer better insights into 

factors affecting stunting and more reliable results than the Poisson model. The modeling results are as 

follows: 

Table 4.4. Parameter estimation of initial negative binomial regression model 

Parameter 
Estimation 

Parameter 

Standard 

Error 
Z-value P-value 

𝛽0 13.449 1.4713 9.141 <0.001** 

𝛽1 0.0222 0.0098 2.260 0.0238** 

𝛽2 -0.0069 0.0132 -0.516 0.6058 

𝛽3 -0.2567 0.1056 -3.378 0.0007** 

𝛽4 -0.0172 0.0356 -0.484 0.6281 

Notes:  ** parameter is significant for 5% level 

 The negative binomial regression modeling results show that not all predictor variables significantly 

impact stunting incidence in children. The percentage of pneumonia (𝑋₁) has a parameter estimate of 0.0222 

with a p-value of 0.0238, indicating a significant effect at the 5% significance level. Conversely, the percentage 

of complete basic immunization (𝑋₂), with a parameter estimate of -0.0069 and p-value of 0.6058, and the 

percentage of poor population (𝑋₄), with a parameter estimate of -0.0172 and p-value of 0.6281, do not 

significantly affect stunting (p-value > 0.05). This suggests that 𝑋₂ and 𝑋₄ do not meaningfully contribute to 

predicting stunting. The lack of significance for 𝑋₂ and 𝑋₄ could be due to limited variability or an indirect 

relationship with stunting factors. It is recommended to remove 𝑋₂ and 𝑋₄ from the model and re-estimate to 

achieve more accurate and efficient results. Below is the visualization of initial negative binomial regression 

model predictions compared to actual stunting counts. 
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Fig 2. Binomial negative initial regression visualization. 

 Variables X₂ (complete immunization) and X₄ (poverty rate) may not significantly impact stunting due 

to low variability or indirect relationships with stunting. Immunization prevents disease but may not directly 

affect nutrition, while poverty influences stunting through complex factors like food access and sanitation. 

The negative binomial model, excluding X₂ and X₄, is presented below. 

Table 4.5. Parameter estimation of the final negative binomial regression model 

Parameter 
Estimation 

Parameter 

Standard 

Error 
Z-value P-value 

𝛽0 12.364 0.4591 26.932 <0.001** 

𝛽1 0.0276 0.0090 3.058 0.0022** 

𝛽3 -0.3329 0.0979 -3.398 0.0006** 

Notes:  ** parameter is significant for 5% level 

 The final negative binomial regression model shows a highly significant intercept (β₀) estimate of 

12.364 (p < 0.001). The percentage of pneumonia (X₁) has a parameter estimate of 0.0276 (p = 0.0022), 

indicating a significant effect on stunting at the 1% level, where each 1% increase in pneumonia percentage 

corresponds to a 1.0279 times increase in stunting cases. Additionally, the percentage of low birth weight (X₃) 

shows a parameter estimate of -0.3329 (p = 0.0006), signifying that a 1% increase in low birth weight 

correlates with a 0.7168 times decrease in stunting cases. Below is the visualization comparing final model 

predictions to actual stunting counts. 

 

Fig 3. Binomial negative final regression visualization. 

 Fig 3 compares the actual stunting cases (blue dots) with the predicted cases from the final negative 

binomial model (red line). The blue dots represent actual stunting counts for each data point (ID), while the 

red line shows model predictions. The final model better aligns with the data trend, capturing higher peaks in 

stunting cases more accurately than previous models. This improved fit demonstrates that the final negative 

binomial model effectively addresses overdispersion, providing predictions that closely match actual stunting 

incidence and better handle data variability and significant outliers. 

4.4 Best Model 

 This evaluation is based on several model performance indicators, including log-likelihood, AIC, BIC, 

and Nagelkerke’s R². The primary goal is to identify a model that fits the data well and provides accurate and 

valid estimates. Selecting the best model offers more precise insights into the factors affecting stunting 

incidence and establishes a strong foundation for more effective child health policy decisions. 

Tabel 4.6. Best model 

Regression Model Log-Likelihood AIC BIC Nagelkerke’s 𝑅2 

Poisson -2735342 5470694 5470701 100% 

Initial Negative Binomial -439.3922 899.9426 890.7845 44.7% 

Final Negative Binomial -438.3123 884.6246 890.7300 50.50% 
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 The final negative binomial regression model demonstrates improved performance with a log-likelihood 

of -438.3123, AIC of 884.6246, BIC of 890.7300, and an increased Nagelkerke’s R² of 50.5%. This model 

provides a more accurate and reliable fit for modeling stunting incidence compared to previous models, 

effectively addressing overdispersion and offering better insight into the data. The final model is as follows: 

�̂�𝑖 = exp(12.364 + 0.0276𝑋1 − 0.3329𝑋3) 

 Based on the parameter estimates of the final negative binomial regression model, the intercept (β₀) is 

estimated at 12.364 with a P-value < 0.001, indicating high significance. The pneumonia percentage (X₁) has 

a parameter estimate of 0.0276, meaning that each 1% increase in pneumonia is significantly associated with 

a 2.79% increase in stunting incidence (exp(0.0276) =  1.0279). Additionally, the low birth weight 

percentage (BBLR) (X₃) has a parameter estimate of -0.3329, where each 1% increase in BBLR is significantly 

related to a 28.32% decrease in stunting incidence (exp(−0.3329) =  0.7168). 

5 Conclusion 

 The initial Poisson regression model indicated all variables significantly impacted stunting (p-value < 

0.001), but high AIC (5470694) and Nagelkerke’s R² (100%) suggested overdispersion. Switching to negative 

binomial regression, the final model excluded non-significant variables (Complete Basic Immunization and 

Poverty Percentage) and showed improved fit (AIC = 884.6246, Nagelkerke’s R² = 50.50%). Pneumonia and 

low birth weight percentages remained significant predictors of stunting. 
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