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Abstract. Let G be a graph is a finite set of vertices and edges. 𝐴 graph 𝐺 can be defined as a pair of 

sets (𝑉(𝐺), 𝐸(𝐺)). The minimum cardinality of all distinguishing sets in a graph is called the metric 

dimension. The metric dimension was first introduced in 1966 by Harary and Melter. The method used 

in this research is deductive proof. The results obtained from this research are we determine the metric 

dimension of the graph resulting from the corona operation on 𝐶𝑛   ⊙ 𝐶𝑛−1 and obtain the result that is 

2n.  
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1 Introduction 

In this paper, we consider finite, simple, and connected graphs [1].  The notation and terminologies mostly 

follow that of Chartrand and Oellermann [2] and Gallian [3]. Let G be a graph with a set of vertices V(G) 

and a set of edges E(G). The distance d (u, v) between two vertices u and v in a connected graph G is 

the length of the shortest u − v path in G.  For an ordered set 𝑊 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘} ⊆ 𝑉(𝐺) of vertices, 

we refer to the ordered k-tuples 𝑟(𝑣|𝑊) = (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), ⋯ , 𝑑(𝑣, 𝑤𝑘)) as the (metric) 

representation of v concerning W. The set W is called a resolving set for G if r  (𝑣|𝑊 ) = r (𝑣|𝑊 ) 

implies that u = v, for all 𝑢, 𝑣 ∈ 𝑉(𝐺). A resolving set of minimum cardinality for a graph G is 

called a minimum resolving set or a basis for G.  

The metric dimension of G, denoted by dim(G), is the number of vertices in a basis for G. The papers 

discussing the notion of a (minimum) resolving set were initially written by Slater in [4] and [5]. 

Slater introduced the concept of a resolving set for a connected graph G under the term location set.  

He called the cardinality of a minimum resolving set by the location number of G. Independently, 

Harary and Melter [6] introduced the same concept but used the term metric dimension instead.  

Some authors have investigated the problem of finding the metric dimension. Chartrand et. al. [7] 

determined the bounds of the metric dimensions for any connected graphs and determined the metric 

dimensions of some well-known families of graphs such as trees, paths, and complete graphs. 

Buczkowski et. al. [8] proved the existence of a graph G with 𝑑𝑖𝑚(𝐺) = 𝑘, for every integer k ≥ 2. In 

addition, they also determined the dimensions of the wheels. Furthermore, the metric dimension problem has 

been investigated for regular bipartite graphs in [9], trees and grid graphs in [10], Petersen graph in [11], 

generalized Petersen graph in [12], join of two graphs in [13], Grassman graph in [14], and other graphs 

[15,16,17]. Some authors also investigated the graphs on some variants of metric dimension. Local metric 

dimension on line graph from friendship and strong product graph [18, 19], Strong metric dimension on 

some related wheel graph [20], K-metric dimension on double fan graph [21], mixed metric dimension on 

double fan graph [22], and double metric dimensions of cactus graphs and block graphs [23]. 

The study of the metric dimension on the corona product of cycle graphs has significant practical 

implications across various fields. One of the important applications of this concept is in communication 

networks and circuit design, where optimal location determination and cost minimization are crucial. A deep 

understanding of the metric structure of these graphs can aid in developing more efficient algorithms for 

routing and node placement in networks. Additionally, other applications include logistics optimization and 

resource management in distributed systems, where cycle graphs and their corona products can accurately 
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represent complex relationships among entities. Thus, this research not only provides valuable theoretical 

contributions but also offers practical solutions to real-world problems faced in current technology and 

industry. 

2  Research Methods 

The method used in this research is deductive proof, which involves conducting case studies and then 

constructing a conjecture (assumption). Based on the constructed assumption, a deductive proof process is 

then carried out. If proven, modifications will be made to the case studies to obtain other assumptions. If the 

process is successful, the assumption will become a theorem, which is the result of the research. 

3 Results and Discussions 

A graph is a set of objects called vertices that are connected by links called edges. The following definition 

of a graph is given in more detail. 

Definition 3.1. Given a graph G = (V, E) where vertices V(G) is a finite, nonempty set, and edges E(G) is a (non-

empty) set, such that: 

1. Every edge E(G) connects exactly two distinct non-consecutive vertices in V(G). 

2. Every two vertices in V(G) are either connected by at least 1 edge or not connected at all. 

 Example 3.1. Let G = (V, E) be a graph where V = { v1, v2, v3, v4, v5, v6, v7, v8) and E ={ v1v2, v2v3, v3v4, 

v4v5, v5v6, v1v6, v1v7, v3v8, v4v8, v5v8, v6v7}. Therefore, with these conditions, the graph G is shown in Figure 

1. 

 

Figure 1. Graf G = (V, E) 

After knowing the definition and examples of graphs, we will discuss cycle graphs next. The following is an 
explanation of cycle graphs. 

Definition 3.2. Let 𝐺 =  (𝑉, 𝐸) be a graph with 𝑣1, 𝑣2 ∈ 𝑉(𝐺) with |𝑉(𝐺)| ≥ 3 and edge 𝑣1𝑣2 ∈ 𝐸(𝐺) is 
said to be cycle graph order 𝑛 that denoted 𝐶𝑛 if 

 

𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛} 

𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, … 𝑣𝑛𝑣1} 

Example 3.2. Given the example of cycle graph in Figure 2. 
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Figure 2. Cycle Graph 

Metric Dimension 

This part will give the terminology of metric dimension. Computing the metric dimension of graphs using 

the metric dimension problem (MDP) is a difficult combinatorial optimization problem. The metric 

dimension of a connected graph 𝐺 is the minimum number of vertices in a subset 𝐵 of 𝐺 such that all other 

vertices are uniquely determined by their distances to the vertices in B. In this case, 𝐵 is called a metric basis 

for 𝐺. The basic distance of a metric two-dimensional graph 𝐺 is the distance between the elements of B. 

Giving a characterization for those graphs whose metric dimensions are two, they enumerated the number of 

𝑛 vertex metric two-dimensional graphs with the basic distance. 

Definition 3.3. Let 𝐺 be a connected graph and d(u,v) be the shortest path. An ordered set vertex 𝑊 =
{𝑤1, 𝑤2, . . . , 𝑤𝑘}  ⊂  𝑉(𝐺) and representation of v over W defined as distance every vertex v to W, denoted 

by 

𝑟(𝑣|𝑊)  =  (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), . . . . , 𝑑(𝑣, 𝑤𝑘)) 

Set W is a resolving set for G if 𝑟(𝑢|𝑊)  ≠  𝑟(𝑣|𝑊) then 𝑢 ≠  𝑣 for every two vertices u and v in G. 

Minimum cardinality of resolving set called metric dimension of G, denoted by dim(G). 

Example 3.3. Given cycle graph order 8 with vertex set V = {v1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} and resolving set 

𝑊 = {𝑣2, 𝑣3} 

 

Figure 3. Cycle graph C8 

Theorem 3.1. If Cn is a cycle graph with n vertices and n ≥ 3, then dim(Cn) = 2. 

Proof. Let V(Cn) = {v1, v2, … , vn} is the vertex set of the cycle graph with n vertices and n ≥ 3.  

For n odd. Let W = {vn−1, vn} we have representation for every vertex of G  over W i 

r(v1|W) = (2, 1) 

r(v2|W) = (3, 2) 

r(v3|W) = (4, 3) 

⋮ 

𝑟(𝑣𝑛−3
2

|𝑊) = (
𝑛 − 1

2
,
𝑛 − 3

2
) 

𝑟(𝑣𝑛−1
2

|𝑊) = (
𝑛 − 1

2
,
𝑛 − 1

2
) 
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𝑟(𝑣𝑛+1
2

|𝑊) = (
𝑛 − 3

2
,
𝑛 − 1

2
) 

𝑟(𝑣𝑛+3
2

|𝑊) = (
𝑛 − 5

2
,
𝑛 − 3

2
) 

⋮ 

r(vn−2|W) = (1, 2) 

r(vn−1|W) = (0, 1) 

r(vn|W) = (1, 0) 

Because ∀𝑢, 𝑣 ∈  𝑉(𝐶𝑛), 𝑢 ≠  𝑣, 𝑟(𝑢|𝑊)  ≠  𝑟(𝑣|𝑊), then 𝑊 =  {𝑣𝑛 − 1, 𝑣𝑛} is a revolving set. Then we 

will prove 𝑊 =  {𝑣𝑛 − 1, 𝑣𝑛} is the minimum resolving set. Because 𝐶𝑛 is cycle graph, we have dim(𝐶𝑛) ≠
1. Therefore, if there is no resolving set with cardinality less than 2, then W with cardinality 2 is the 

resolving set with minimum cardinality. We get dim (𝐶𝑛)  =  2 for n odd. 

For 𝑛 is even. 

Let 𝑊 = {𝑣𝑛−2, 𝑣𝑛} we have representation for every vertex of 𝐺  over 𝑊 is  

𝑟(𝑣1|𝑊)  =  (2, 1) 

𝑟(𝑣2|𝑊)  =  (3, 2) 

𝑟(𝑣3|𝑊)  =  (4, 3) 

⋮ 

𝑟(𝑣𝑛−2
2

|𝑊) = (
𝑛

2
,
𝑛 − 2

2
) 

𝑟(𝑣𝑛
2

|𝑊) = (
𝑛 − 2

2
,
𝑛

2
) 

𝑟(𝑣𝑛+2
2

|𝑊) = (
𝑛 − 4

2
,
𝑛 − 2

2
) 

⋮ 

𝑟(𝑣𝑛 − 2|𝑊)  =  (1, 2) 

𝑟(𝑣𝑛 − 1|𝑊)  =  (0, 1) 

𝑟(𝑣𝑛|𝑊)  =  (1, 0) 

Because ∀𝑢, 𝑣 ∈  𝑉(𝐺), 𝑢 ≠  𝑣, 𝑟(𝑢|𝑊)  ≠  𝑟(𝑣|𝑊), then W = {𝑣𝑛−2, 𝑣𝑛 } is resolving set. 

Then we will prove W = { vn−2, vn} is the minimum resolving set. Because 𝐶𝑛  is cycle graph, we have 
dim(𝐶𝑛) ≠ 1. Therefore, if there is no resolving set with cardinality less than 2, then W with cardinality 2 is 
the resolving set with minimum cardinality. We get dim (𝐶𝑛)  =  2 for n even.  

Corona Operation Results Graph 

Definition 3.4. The corona operation on a graph is a graph-theoretical construction where for a given graph 
𝐺 with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺), and a second graph 𝐻 with vertex set 𝑉(𝐻) and edge set 𝐸(𝐻), 
the corona 𝐺 ⊙ 𝐻 is formed by taking one copy of 𝐺 and |𝑉(𝐺)| copies of 𝐻 and then joining each vertex 𝑣 
in 𝐺 to every vertex in the 𝑣-th copy of 𝐻. In simpler terms, it involves attaching a copy of graph 𝐻 to each 
vertex of graph G, connecting each vertex of G to every vertex in the corresponding copy of H.  
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Metric Dimension on Corona Operation 𝑪𝒏 ⊙ 𝑪𝒏−𝟏  

Example 3.4. Given the graph 𝐶4 ⊙ 𝐶3, which is the corona product of the cycle graph 𝐶4 denoted by 𝑉 =
{𝑣1, 𝑣2, 𝑣3, 𝑣4} and the cycle graph 𝐶3 denoted by 𝑉{𝑢11, 𝑢12, 𝑢13, 𝑢21, 𝑢22, 𝑢23, 𝑢31, 𝑢32, 𝑢33, 𝑢41, 𝑢42, 𝑢43}, 
where 𝑛 ≥ 4. The graph 𝐶4 ⊙ 𝐶3 is shown in Figure 5. 

 

Figure 4. Example of Corona Operation 

 

Figure 5. Graph of Corona Operation Results C4 ⊙ C3 

We have W = {u11, u12, u21, u22, u31, u32, u41, u42} then we have representation as follows:  

r(u11|W) = (0, 1, 3, 3, 4, 4, 3, 3) 

r(u12|W) = (1, 0, 3, 3, 4, 4, 3, 3) 

r(u13|W) = (1, 1, 3, 3, 4, 4, 3, 3) 

r(u21|W) = (3, 3, 0, 1, 3, 3, 4, 4) 

r(u22|W) = (3, 3, 1, 0, 3, 3, 4, 4) 

r(u23|W) = (3, 3, 1, 1, 3, 3, 4, 4) 

r(u31|W) = (4, 4, 3, 3, 0, 1, 3, 3) 

r(u32|W) = (4, 4, 3, 3, 1, 0, 3, 3) 

r(u33|W) = (4, 4, 3, 3, 1, 1, 3, 3) 

r(u41|W) = (3, 3, 4, 4, 3, 3, 0, 1) 

r(u42|W) = (3, 3, 4, 4, 3, 3, 1, 0) 

r(u43|W) = (3, 3, 4, 4, 3, 3, 1, 1) 

r(v1|W) = (1, 1, 2, 2, 3, 3, 2, 2) 

r(v2|W) = (2, 2, 1, 1, 2, 2, 3, 3) 

r(v3|W) = (3, 3, 2, 2, 1, 1, 2, 2) 

r(v4|W) = (2, 2, 3, 3, 2, 2, 1, 1) 

Note that the metric dimension of the graph resulting from the corona operation 𝐶𝑛 ⊙ 𝐶𝑛−1 is 2𝑛. The 
following theorem guarantees this. 

Theorem 3.2. The metric dimension of the graph resulting from the corona operation 𝐶𝑛 ⊙ 𝐶𝑛−1 is 2𝑛. 

Proof. We note that G is corona product of Cn ⊙ Cn−1, then G consists of V(G) = {u11, · · · , u1(n−1), u21, · · · , 
u2(n−1), un1, · · · , un(n−1), vn}. Let W = {u11, u12, u21, u22, · · · un1, un2} is resolving set such that |W| = 2n. 
Representation r(u|W) as follows: 

𝑟(𝑢1(𝑛−1)|𝑊) = (1, ⋯ , 1, 3, ⋯ , 3, ⋯ , 3) 
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𝑟(𝑢2(𝑛−1)|𝑊) = (3, ⋯ , 3, 1, ⋯ , 1, ⋯ , 4) 

⋮ 

𝑟(𝑢𝑛(𝑛−1)|𝑊) = (3, ⋯ , 3, 4, ⋯ , 4, ⋯ , 1). 

𝑟(𝑣1|𝑊) = (1, ⋯ , 1, 2, ⋯ , 2, ⋯ , 2). 

𝑟(𝑣2|𝑊) = (2, ⋯ , 2, 1, ⋯ , 1, ⋯ , 3). 

⋮ 

𝑟(𝑣𝑛|𝑊) = (2, ⋯ , 2, 3, ⋯ , 3, ⋯ , 1). 

Since the coordinates 𝑟(𝑢|𝑊) for each vertex are different, |𝑊|  =  2𝑛 is a resolving set. Next, it will be 
proven that the resolving set 𝑊 =  {𝑢11, 𝑢12, 𝑢21, 𝑢22, … , 𝑢𝑛1, 𝑢𝑛2}  is a set with minimum cardinality. 
Suppose there is a resolving set 𝑊 =  {𝑢11, 𝑢21, … , 𝑢𝑛1}  such that |𝑊|  =  𝑛. The coordinate 𝑟(𝑢|𝑊) of 
vertex 𝑢 concerning 𝑊 is 

       𝑟(𝑢12|𝑊)  =  (1, 3, … , 3). 

𝑟(𝑢1(𝑛−1)|𝑊)  =  (1, 3, … , 3). 

Since there are 𝑢12, 𝑢1(𝑛−1) ∈  𝑉(𝐺) with 𝑢12 ≠  𝑢1(𝑛−1) and 𝑟(𝑢12|𝑊)  =  𝑟(𝑢1(𝑛−1)|𝑊), then 𝑊 =
 {𝑢11, 𝑢21, … , 𝑢𝑛1} is not a revolving set. Because there is no resolving set with cardinality less than  2𝑛, 𝑊 
with cardinality 2𝑛 is the resolving set with minimum cardinality. Therefore, 𝑑𝑖𝑚(𝐶𝑛 ⊙  𝐶𝑛−1)  =  2𝑛. 

4 Conclusion 
The metric dimension of the graph resulting from the corona operation ( 𝐶𝑛  𝑐𝑖𝑟𝑐 𝐶{𝑛−1} ) 𝑖𝑠 ( 2𝑛 ). This 

result highlights the relationship between the structure of the original graphs and the complexity of their 

metric dimension when combined through the corona operation. Specifically, it shows that the metric 

dimension scales linearly with the number of vertices in the initial cycle graph ( 𝐶𝑛). Understanding this 

relationship can be valuable for applications in network design, where the uniqueness of vertex identification 

is critical. 

Suggestions:  

1. Further Research: Investigate the metric dimensions of other types of graphs resulting from corona 

operations with different base graphs. This can help to generalize the findings and explore potential 

patterns or rules. 

2. Algorithm Development: Develop efficient algorithms to compute the metric dimension for large 

graphs resulting from corona operations. This will be beneficial for practical applications where 

computational resources are limited. 

3. Application in Network Design: Utilize the findings in designing robust and efficient communication 

networks where unique identification of nodes is necessary. Understanding the metric dimension can 

improve network navigation and error detection. 

4. Educational Tools: Create educational materials and tools to help students and researchers understand 

and visualize the concept of metric dimensions in corona operations. Interactive graph tools and visual 

aids can enhance learning and research efficiency. 
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